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ABSTRACT

Reversible data hiding (RDH) is desirable in applications where both
the hidden message and the cover image need to be recovered with-
out loss. Among many RDH approaches is prediction-error expan-
sion (PEE), containing two steps: i) prediction of a target pixel value,
and ii) embedding according to the value of the prediction error. In
general, higher prediction performance leads to larger embedding
capacity and/or lower signal distortion. Leveraging on recent ad-
vances in graph signal processing (GSP), we pose pixel prediction
as a graph-signal restoration problem, and design non-local graph-
based prediction schemes where the appropriate edge weights of the
underlying graph are computed using a similar patch searched in a
semi-local neighborhood. Specifically, for each candidate patch, we
first examine eigenvalues of its structure tensor to estimate its local
smoothness. If sufficiently smooth, we pose a maximum a posteriori
(MAP) problem using either a quadratic Laplacian regularizer or a
graph total variation (GTV) term as signal prior. While the MAP
problem using the first prior has a closed-form solution, we design
an efficient algorithm for the second prior using alternating direc-
tion method of multipliers (ADMM) with nested proximal gradient
descent. Finally, hidden message will be embedded into the image
according to the resulting prediction errors. Experimental results
show that with better quality GSP-based prediction, at low capac-
ity the visual quality of the embedded image exceeds state-of-the-art
methods noticeably.

Index Terms— reversible data hiding, graph signal processing

1. INTRODUCTION

Reversible data hiding (RDH) denotes a class of techniques where
both the embedded message and the cover image can be recovered
without loss at the decoder, with applications to copyright protection,
secret communication, etc. Among many RDH approaches in the
literature—e.g., difference expansion (DE) [1–3], histogram shifting
(HS) [4]—is prediction-error expansion (PEE) [5, 6], which exploits
inherent smoothness in natural images for data embedding. PEE is
the most popular approach at present. It consists of two steps: i) pre-
diction of a target pixel value from context, and ii) embedding bits
(expanding) or shifting according to the value of the prediction er-
ror. In general, higher prediction performance can lead to more em-
bedded information bits (larger capacity), or lower signal distortion
for the same target embedding capacity. Previous proposed predic-
tion schemes include rhombus [6] and partial differential equations
(PDE) [7], which are simple signal interpolation strategies assuming
local smoothness.

This work was supported by the National Key R&D Program of China
(No. 2016YFB0800404) and the National Natural Science Foundation of
China (No. 61532005, 61332012, 61572052, 61672090).

In this paper, we focus on improving prediction in PEE by lever-
aging on advance in graph-signal restoration [8–10]. Specifically,
for each pixel patch, unlike conventional PEE schemes that com-
pute local complexity (LC) based on average patch gradients, we
first examine eigenvalues of its structure tensor [11] to estimate the
signal’s piecewise smoothness (PWS) and pre-select prediction can-
didates. Pixels in PWS areas are given priority for prediction and
embedding. For a candidate patch, then assuming the self-similarity
characteristic in natural images—-common in image denoising such
as non-local means (NLM) [12]—we search for a similar patch in
a semi-local neighborhood. The graph of this candidate patch will
be generated by using the similar patch to compute appropriate edge
weights. We then pose pixel prediction as a maximum a posteri-
ori (MAP) problem with suitable graph-signal smoothness priors: a
quadratic graph Laplacian regularizer [9], or a graph total variation
(GTV) term [13]. We show that the MAP problem with the first
prior has a numerically stable closed-form solution. We then design
an efficient algorithm for the second prior using alternative direction
method of multipliers (ADMM) [14] combined with a nested proxi-
mal gradient descent [15] with theoretically provable convergence.

Given a predicted value, following previous PEE schemes [5, 6]
we embed an information bit based on a conventional histogram
modifying procedure. We show that this prediction structure can be
executed in four individual layers in succession, increasing the over-
all embedding capacity. We focus on the low capacity region, since
using semi-local search for similar patches inevitably leads to lim-
ited embedding capacity. Experimental results show that with better
quality graph-based prediction, at low capacity the visual quality of
the embedded image exceeds two state-of-the-art methods with the
same PEE-based bit embedding procedure.

2. RELATED WORK

Tian [1] proposed a difference expansion (DE) method applying in-
teger Haar wavelet transform to compute differences of pixel val-
ues. Then a message sequence is embedded into the vacancies of
these differences via expanding. PEE [5] is an extension of DE, and
it exploits smoothness of natural images for prediction to improve
embedding performance with small distortion increase. Histogram
shifting (HS) [4], generates a histogram and shifts some bins to cre-
ate space to embed bits. DE and HS are two most popular RDH
technologies, and as a combination of PEE and HS, HS-PEE is the
most commonly used method. It has two major steps: prediction-
error histogram (PEH) generation and histogram modification. A
PEH is generated by employing prediction to pixels. A more accu-
rate prediction scheme has a sharper histogram distribution centered
at 0. By expanding and shifting PEH, histogram bins near 0 are
expanded to embed data, and other bins are shifted outwards to cre-
ate space for expansion. Finally, pixel values are modified to obtain
the embedded image. Following [5], many RDH techniques related
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Fig. 1. Left: Piecewise smooth patch. Right: Smooth patch.

to PEE have been proposed recently, some of them optimized pre-
diction performance, and others designed new histogram modifying
strategies [16–18].

Our method focuses on improving the prediction part with a con-
ventional histogram modifying approach. The previous approaches
are mostly based on predicted pixels’ local context. Rhombus pre-
diction with sorting is proposed in Sachnev et al. [6]. It uses a
checkerboard and double-layered embedding strategy, and predicts
pixel by calculating the mean of its four nearest neighboring pixels.
Then all prediction errors are sorted by local complexity (LC): a can-
didate patch with smaller LC tends to have smaller prediction error
and thus higher priority for data embedding. Ou et al. [7] proposed
a PDE method. The initial prediction-error values are calculated by
rhombus prediction. Then it is iteratively updated by considering the
gradients of four directions based on local context. Dragoi et al. [19]
proposed a local-prediction-based method which uses a least square
predictor in a square block centered on the pixel without increasing
any additional information. More recently, Chen et al. [20] proposed
a directionally enclosed prediction and expansion (DEPE) method,
observing that LC is not always proportional to the magnitude of
prediction-error. It predicts a pixel using horizontal or vertical pre-
dictors, and only pixels where LC is proportional to the magnitude
of prediction-error are used for embedding.

Different from these methods, our proposal leverages on re-
cent image interpolation ideas such as NLM [12] and graph-signal
restoration [8–10]. Other PEE-based schemes can also potentially
benefit from adopting our prediction contribution.

3. SYSTEM OVERVIEW

3.1. Structure Tensor as Smoothness Criterion

We first overview our reversible data hiding system. Compared to
previous PEE schemes, we mainly focus on improving pixel predic-
tion accuracy, leveraging on recent advances in graph-based image
restoration [8–10]. For natural images, a pixel in a smooth area—
e.g., the right block in Fig. 1—is more likely to be predictable lo-
cally, and thus has potential to embed an information bit. In previ-
ous prediction methods like [6], LC is computed for each candidate
pixel, and only pixels with LC lower than a threshold (pre-selected
to guarantee a target capacity) are predicted and expanded to em-
bed bits. However, for piecewise smooth (PWS) patch—e.g., the left
block in Fig. 1—LC is high and naı̈ve local prediction methods like
[6] cannot perform well.

Because our graph-based prediction scheme can also well pre-
dict pixels in PWS patches (to be detailed next), we propose a
smoothness criterion based on structure tensor [11] that recognizes
and permits PWS patches for embedding. Specifically, for each
candidate pixel in each layer, we compute the eigenvalues of its
structure tensor using the pixel’s surrounding neighboring 8 pixels
(to ensure reversibility). If the smaller of the two eigenvalues λmin

is smaller than a threshold τ , we declare the patch as “predictable”,
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Fig. 2. Number of embeddable pixels versus threshold for eigen-
value λmin of structure tensor for the first layer of Airplane.

i.e., it is a valid candidate for embedding. Other candidate pixels
that are not predictable are excluded. Eigenvectors of a structure
tensor correspond to major and minor gradients of the patch, with
eigenvalues representing the magnitude of the gradients. Thus a
piecewise constant (PWC) patch has λmin = 0, since its minor
gradient (direction parallel to its discontinuity) has zero magnitude.

We tune τ per image to exclude unpredictable pixels and to en-
sure the number of predictable pixels reaches the target capacity for
each layer. As an illustration, in Fig. 2 we observe that as threshold
τ increases, the number of embeddable pixels in the first layer of im-
age Airplane increases monotonically. We can thus estimate the
optimal threshold τ∗ via a simple binary search.

3.2. Semi-local Search for Similar Patch

For each remaining candidate pixel, assuming the self-similarity
characteristic in natural images (as done in NLM for image denois-
ing [12]), we search in a semi-local window to find the most similar
patch (using its surrounding eight neighboring pixels) in terms of
Euclidean distance of their mean-removed AC components. A patch
that contains other to-be-embedded pixels will not be considered for
matching. The best-matched patch is used to compute edge weights
in a graph, then one of two graph-based prediction algorithms in
Section 4 is performed.

3.3. Side Information

For natural images, the value of pixels should be within [0, 255]. Lo-
cation map (LM) is commonly used to handle the underflow/overflow
problem to ensure reversibility [1], which marks the locations of
problematic pixels. In our approach, the maximum modification to
each pixel is 1, and only boundary pixels will cause problems. Pixels
with value 1 or 254 will be marked with 0 in LM. Pixels with value
0 (255) are modified to 1 (254) and marked with 1 in LM. Finally,
the location map is lossless compressed and embedded into image.

To ensure reversibility, nine parameters—the message size, four
thresholds for structure tensor of each layer and four compressed
location map size—are embedded into the image. To reduce the side
information size, the six parameters of last three layers are encoded
as the difference with previous layers with one flag bit. For most
images, the boundary pixels are just a few, so LM can be efficiently
compressed. Specifically, the overhead is 6 + 9 + (1 + 7) × 3 +
7 + (1 + 5)× 3 = 64 bits, which is comparable with existing PEE
literature.

3.4. Multi-layer Bit Embedding

As shown in Fig. 4, we divide candidate pixels in an image into four
non-overlapping sets, so that bits embedding can be executed in four
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Fig. 4. Pixels of image are divided to four layer.

layers in succession. Side information is embedded into Least Sig-
nificant Bits (LSBs) of the first line of image using LSB replace-
ment. So, the embedded payload includes the replaced LSBs, the
compressed LM and the message. For each layer, 1/4 of the pay-
load will be embedded, then a conventional PEE embedding map-
ping strategy as shown in Fig. 3 is used. Here we only consider the
case that the maximum modification to each pixel value is restricted
to 1, so only prediction error values 0 and -1 (’embeddable’) can
be expanded to embed bits as shown. Other prediction error values
(’not embeddable’) are shifted to ensure reversibility at the decoder
(resulting in distortion). The pixels of the second layer are predicted
and embedded after embedding in the first layer is completed, then
prediction and embedding in the third and fourth layer in order.

In the extraction stage, after extracting the side information, de-
coder uses the same non-local prediction strategy to predict the pix-
els of the fourth layer, extract embedded bits and restore original
pixel values, then perform the same process for the third, second and
first layer in order.

4. GRAPH-BASED PREDICTION

We propose two graph-based smoothness priors for pixel prediction
in PEE: quadratic graph smoothness prior [9] and graph total vari-
ation (GTV) prior [13] previously used for image restoration, but
for the first time in the literature we tailor their use for RDH. The
first prior is computation-efficient, but the second can lead to better
prediction performance in some cases.

4.1. Graph Construction from Similar Patch
We first construct an appropriate graph for a given target block x ∈
RN . Denote by H ∈ {0, 1}K×N a sampling matrix that selects K
observable pixels from a N -pixel patch x ∈ RN to an observation
y ∈ RK ; i.e., y = Hx. The remaining N − K pixels will be
predicted in our framework. Specifically for our embedding scheme,
x is a 3 × 3 pixel patch, y is the surrounding eight pixels, and the
center pixel is predicted.

Using y, we first search for a similar patch x′ in a defined semi-
local neighborhood that is most similar to x in terms of Euclidean
distance. Having found x′, we construct a 8-connected similarity
graph, where edge weight wi,j between neighboring pixels i and j
is computed as follows:

wij = exp

(
−‖li − lj‖22

σ2
l

−
‖x′i − x′j‖22

σ2
x

)
(1)

where li and x′i are location and pixel intensity of pixel i, and σl

and σx are two parameters. We can then define an adjacency matrix
W where Wi,j = wi,j , a diagonal degree matrix D where Di,i =∑

j Wi,j , and a combinatorial graph Laplacian matrix L = D−W.

4.2. Quadratic Graph Smoothness Prior
Given the graph Laplacian L, we can formulate a maximum a pos-
teriori (MAP) problem as follows. Using a graph Laplacian regular-
izer [9] as a signal prior, we can write the following objective:

min
x
‖y −Hx‖22 + γxTLx (2)

where γ > 0 is a parameter to trade off the fidelity term (negative
log likelihood term in Bayesian terminology) and the prior term.

(2) is a linear combination of two quadratic terms in optimiza-
tion variable x. Hence to optimize (2), we take the derivative of (2)
with respect to x, equate it to 0 and solve for the closed form solution
x∗:

x∗ = (HTH+ γL)−1HTy (3)

We show that the matrix HTH + γL in our case is invertible. As-
suming positive edge weights, one can show that L is positive semi-
definite (PSD), and has (unnormalized) constant vector 1 as eigen-
vector corresponding to eigenvalue 0. Because H is a sampling ma-
trix containing only non-negative entries, H1 has entries strictly
greater than 0, and 1 cannot be an eigenvector corresponding to
eigenvalue 0 for HTH, which is PSD. Hence there does not exist
a vector v such that vT (HTH + γL)v = 0. Since HTH + γL is
at least PSD by Weyl’s inequality but does not contain eigenvalue 0,
it is positive definite (PD) and thus invertible.

4.3. Graph Total Variation Prior
The second prior is GTV [13], resulting in a l2 / weighted-l1 opti-
mization problem:

min
x
‖y −Hx‖22 + γ

∑
i,j

wi,j |xi − xj | (4)

where γ again is a tradeoff parameter. To solve (4), we first rewrite
it as follows. We first define zi,j = xi − xj . Then (4) becomes,

min
x,z
‖y −Hx‖22 + γ

∑
i,j

wi,j |zi,j |

s.t. zi,j = xi − xj , ∀(i, j) ∈ E (5)

To solve (5), unlike [13] that employed a primal-dual algorithm
for an unconstrained GTV objective, we design a new algorithm
based on Alternating Direction Method of Multipliers (ADMM) [14]
with a nested proximal gradient descent [15]. We first write the set
of linear constraints for connected pixel pairs in matrix form:

z = Fx (6)

where z ∈ RM and F ∈ {−1, 0, 1}M×N . Specifically, for each
zi,j , the corresponding row in F has all zeros except entries i and j
that have 1 and −1 respectively. We can now rewrite (5) in ADMM
scaled form as follows:

min
x,z
‖y −Hx‖22 + γ

∑
i,j

wi,j |zi,j |+
ρ

2
‖Fx− z+ u‖22 + const

(7)

where ρ > 0 is a Lagrange multiplier. As typically done in ADMM,
we solve (7) by iteratively minimizing x and z and updating u one
at a time in turn until convergence as follows.
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4.3.1. x-minimization
To minimize x having zk and uk fixed, we take the derivative of (7)
with respect to x and set it to 0:

(
2HTH+ ρFTF

)
x∗ = 2HTy − ρFT (uk − zk) (8)

Because F is an inter-pixel difference operator, it is easy to see that
F1 = 0, and 1 is an eigenvector corresponding to eigenvalue 0 for
FTF. However, using the same previous reasoning, 1 cannot be an
eigenvector corresponding to eigenvalue 0 for HTH. Given HTH
and FTF are both PSD, there does not exist a vector v such that
vT (2HTH + ρFTF)v = 0. Since 2HTH + ρFTF must be at
least PSD (again by Weyl’s inequality) but has no eigenvalue 0, we
can conclude that it is PD and invertible. Thus x∗ can now be readily
computed as a full-rank system of linear equations in (8).

4.3.2. z-minimization
Keeping xk+1 and uk fixed, the optimization for z becomes:

min
z

ρ

2
‖Fxk+1 − z+ uk‖22 + γ

∑
i,j

wi,j |zi,j | (9)

where the first term is convex and differentiable, and the second term
is convex but non-differentiable. We can thus use proximal gradient
[15] to solve (9). The first term has gradient∇z:

∇z(x
k+1, z,uk) = −ρ(Fxk+1 − z+ uk) (10)

We can now define a proximal mapping proxg,t(z) for a convex,
non-differentiable function g( ) with step size t as:

proxg,t(z) = argmin
θ

{
g(θ) +

1

2t
‖θ − z‖22

}
(11)

We know that for our weighted l1-norm in (9), the proximal mapping
is just a soft thresholding function:

proxg,t(zi,j) = sign (zi,j)max (0, |zi,j | − tγwi,j) (12)

We can now update zk+1 as:

zk+1 = proxg,t(z
k − t∇z(x

k+1, zk,uk)) (13)

We compute (13) iteratively until convergence.

4.3.3. u-update
Finally, we can update uk+1 simply:

uk+1 = uk + (Fxk+1 − zk+1) (14)

x, z and u are iteratively optimized in turn using (8), (13) and
(14) until convergence. See [14] and [15] for convergence proofs of
ADMM and proximal gradient respectively.

5. EXPERIMENTS

We compare our proposed reversible data hiding scheme with two
state-of-the-art methods, Sachnev et al. [6] and Ou et al. [7], in terms
of capacity-distortion performance. We chose these two comparison
methods because they both focus on prediction improvement and
employ the same histogram modifying procedure as us.

Four standard 512 × 512 sized gray-scale images are used for
testing: Airplane, Boat, Elaine and Lake. We focus the com-
parison on low capacity, since using semi-local search for similar
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Fig. 5. (a)–(d): PSNR versus embedding capacity for Airplane,
Boat, Elaine and Lake using our proposed methods, Ou et al.[7]
and Sachnev et al. [6].

patches inevitably leads to limited embedding capacity. As shown
in Fig. 5(a) through (d)—PSNR ranges for comparisons are con-
sistent with pixel-domain PEE literature [6]—our proposal using
the quadratic graph prior has up to 3.01dB and 2.56dB gains, and
1.33dB and 0.99dB on average, in PSNR over [6] and [7], respec-
tively. Here, the selected parameters are σl = σx = 0.5, γ = 0.5,
ρ = 5, t = 0.1. We use the 3 × 3 patch to generate graph since
experimentally we observed that larger patches are more difficult to
search for similar patches in a semi-local neighborhood. The size of
the semi-local neighborhood used to find a similar patch is 31× 31.
Different thresholds τ are optimized for different layers for differ-
ent images, where the range is [0, 5]. As shown in Fig. 2, when τ
is 0.11, it is sufficient to meet the 10000 capacity requirement for
the first layer of image Airplane when employing quadratic prior.
For the rest of the layers, τ are 0.14, 0.16, 0.17 respectively. For
image Airplane and Elaine, GTV prior has a maximum gain of
0.16dB and 0.57dB in PSNR over the quadratic graph prior in low
capacity. In other regions, the two priors are comparable.

6. CONCLUSION

Prediction-error expansion (PEE) is a reversible data hiding (RDH)
approach with two steps: i) prediction of a target pixel value based
on local context; and ii) embedding bits according to the value of
prediction-error. In this paper, we improve the pixel prediction per-
formance using one of two graph-signal smoothness priors: graph
Laplacian regularizer, and graph total variation (GTV). The posed
inverse problem using the first prior has a closed-form solution. We
design an algorithm for the second prior using alternating direction
method of multipliers (ADMM) with nested proximal gradient de-
scent. Our embedding scheme can be executed in four individual
layers in succession, resulting in higher embedding capacity. Exper-
iments show that our graph-based predictions lead to better visual
quality of the embedded images compared to state-of-the-art meth-
ods.
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